Small Business Innovation Research/Small Business Tech Transfer

Low-Cost, Manufacturable, 6-Inch Wafer Bonding Process for Next-Generation 5-Junction IMM+Ge Photovoltaic Devices, Phase II

Completed Technology Project (2015 - 2018)

Project Introduction

To continue the trend towards ever more efficient photovoltaic devices, nextgeneration multi-junction cells will be based on increasingly complex structures. These structures will require the ability to join two or more independently grown epitaxial structures together via wafer bonding which is a complicated process to include in a high-volume manufacturing environment using conventional wafer fusion techniques. Additionally, metamorphic material is very difficult to bond due to the inherent roughness of the surface. We propose the development of a bonding process based on an epoxy interface with an embedded metallic grid to provide electrical conductivity across the bonded interface. This process is expected to be low-cost, compatible with metamorphic material and high-volume manufacturing, and readily scalable to 6-inch or larger substrates. It will be an enabling technology for next-generation, five- and six-junction solar cells with 1-sun AMO efficiency exceeding 37% in high volume production. An example device structure that can benefit from the proposed wafer bonding technique is a sixjunction solar cell. This six-junction device is composed of two triple-junction stacks, one of which is grown on a GaAs substrate while the other is grown on an InP substrate. The two triple-junction stacks must be bonded together to form the final six-junction device. The epoxy-bonding process proposed here will allow this bonding to be accomplished reliably on large-area substrates. This is essential for turning this structure into a practical, manufacturable, commercial product. When coupled with MicroLink Device's proprietary epitaxial lift-off (ELO) technology which allows for reuse of both the GaAs and InP substrates, devices based on this six-junction architecture could potentially be manufactured for less than \$170/W in sufficient volume to serve near-term applications. This structure is expected to yield 40% efficiency under AMO illumination.

Low-Cost, Manufacturable, 6-Inch Wafer Bonding Process for Next-Generation 5-Junction IMM+Ge Photovoltaic Devices, Phase II

Table of Contents

Project Introduction	1
Primary U.S. Work Locations	
and Key Partners	2
Project Transitions	2
Organizational Responsibility	2
Project Management	2
Technology Maturity (TRL)	2
Images	3
Technology Areas	3
Target Destinations	3

Small Business Innovation Research/Small Business Tech Transfer

Low-Cost, Manufacturable, 6-Inch Wafer Bonding Process for Next-Generation 5-Junction IMM+Ge Photovoltaic Devices, Phase II

Completed Technology Project (2015 - 2018)

Primary U.S. Work Locations and Key Partners

Organizations Performing Work	Role	Туре	Location
MicroLink Devices, Inc.	Lead Organization	Industry Minority-Owned Business	Niles, Illinois
Glenn Research Center(GRC)	Supporting Organization	NASA Center	Cleveland, Ohio

Primary U.S. Work Locations	
Illinois	Ohio

Project Transitions

May 2015: Project Start

September 2018: Closed out

Closeout Documentation:

• Final Summary Chart(https://techport.nasa.gov/file/137552)

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Organization:

MicroLink Devices, Inc.

Responsible Program:

Small Business Innovation Research/Small Business Tech Transfer

Project Management

Program Director:

Jason L Kessler

Program Manager:

Carlos Torrez

Principal Investigator:

Victor C Elarde

Technology Maturity (TRL)

Small Business Innovation Research/Small Business Tech Transfer

Low-Cost, Manufacturable, 6-Inch Wafer Bonding Process for Next-Generation 5-Junction IMM+Ge Photovoltaic Devices, Phase II

Completed Technology Project (2015 - 2018)

Images

Briefing Chart

Low-Cost, Manufacturable, 6-Inch Wafer Bonding Process for Next-Generation 5-Junction IMM+Ge Photovoltaic Devices Briefing Chart (https://techport.nasa.gov/imag e/132067)

Final Summary Chart Image

Low-Cost, Manufacturable, 6-Inch Wafer Bonding Process for Next-Generation 5-Junction IMM+Ge Photovoltaic Devices, Phase II Project Image (https://techport.nasa.gov/imag e/134441)

Technology Areas

Primary:

- TX03 Aerospace Power and Energy Storage
 - └─ TX03.1 Power Generation and Energy Conversion
 └─ TX03.1.1 Photovoltaic

Target Destinations

The Sun, Earth, The Moon, Mars, Others Inside the Solar System, Outside the Solar System

